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Abstract

Cloud services exist under a shared security environment; both cloud services providers (CSPs) and
users contribute to overall security. We investigate the nature of shared security in a dynamic game where
users’ security contributions and cloud usage figure into their CSP’s vulnerability. Furthermore, CSPs’
own security contribution takes into account both their users as well as competition with other CSPs. The
Markov Perfect Equilibrium reveals the long-term time patterns of security of the cloud. In particular, we
identify a novel form of time-path strategic complementary between usage and a CSP’s Markov state of
security. This implies that cloud security is an unusual form of impure public good whereby individual
contributions bolstering a CSP’s security endow a selective incentive (private benefit) on others, rather
than only providing a selective incentive to the contributors themselves. Since this increases usage, CSP
vulnerability increases over time. At the same time, the CSPs’ competition with security may lead to
a welfare improvement, but the lock-in effect of security on the platforms shapes the CSP’s security
investment and, eventually, the security results.

1 Introduction

As more businesses move into the cloud, and ransomware becomes a big-game-hunting affair, understanding
the dynamic structure of cloud security is necessary for cloud services providers and their users alike. For
example, Microsoft presently encourages its business users to take shelter in the cloud, building tools allowing
its bread-and-butter products to be used on rival cloud services providers (CSPs) and their associated security
solutions (Tilley and McMillan 2022). By contrast, Blumenthal (2011) outlines various ways the cloud might
be seen as a “new platform for malice.” For example, data centers provide both economies of scale and large
targets for malicious actors. Indeed, cloud data breaches cost more and take longer to identify (IBM 2023).
On top of this, CSP use introduces a new type of exposure to insider attacks – those with knowledge of the
CSP’s architecture, configuration attributes, and parameters (Cansever 2020). August, Niculescu, and Shin
(2014) describe a middle ground, where Software-as-a-Service (SaaS) poses less undirected cybersecurity risk as
compared to its on-site version, but more organizational-level directed cybersecurity risk.1 Such ‘diversification’
may result in less overall risk. Our focus is on the CSP-user dynamics of directed risk in order to evaluate the
consequences of taking shelter in the cloud.

This focus in part stems from new guidance issued by the Joint Cybersecurity Advisory (CSA) – authored
by the Cybersecurity and Infrastructure Security Agency (CISA), Federal Bureau of Investigation (FBI), and
National Security Agency (NSA) – where the importance of the cloud is now on par with enterprise environ-
ments.2 CSA also has an accompanying analysis report (AR21-013A) for further cloud security guidance. All

1Undirected risk associated with on-site versions stems from malicious actors targeting many individual users in any system
running the version. Directed risk stems from malicious actors targeting a particular cloud system version, thereby affecting many
organizations at once.

2https://www.cisa.gov/news/2022/02/09/cisa-fbi-nsa-and-international-partners-issue-advisory-ransomware-trends-2021

1



proposed solutions require cloud users to do more to defend their services.3 Similarly, in the online summit
discussing their inaugural Cloud Risk Report (Crowdstrike 2023), Crowdstrike warns, the cloud is the new
attack surface due to the way the cloud ends up being the platform for securing multiple forms of computing.
Palo Alto Networks (2023) takes it a step further, calling the cloud the dominant attack surface, owing to
findings in its Unit 42 Attack Surface Threat Report that 80 percent of medium, high or critical exposures are
on assets in the cloud for the organizations analyzed.

The cloud security environment embodies shared security (Tianfield 2012, Almorsy, Grundy, and Müller
2016, Al-Otaibi 2021) and joint responsibility (Tajalizadehkhoob, Van Goethem, Korczyński, Noroozian,
Böhme, Moore, Joosen, and van Eeten 2017) because both CSPs and users contribute to overall security.
Throughout our paper, the term user refers to a firm with a service level agreement (SLA) with their CSP.
Simply put, shared security and joint responsibility involve security of the cloud, referring to CSPs’ responsibil-
ities toward securing hardware, global infrastructure, virtual machine images within repositories, etc.; versus
security in the cloud, referring to users’ responsibilities for securing their own network, firewall configurations,
etc. Misconfigurations at interfaces between user and CSP are often susceptible to exploitation, such as the
2019 Capital One breach on AWS by a former AWS employee. Another example is users leaving CSP’s default
passwords intact. Users must also ensure they correctly deactivate unused sites in the cloud, otherwise, the
sites remain unmaintained and with out-of-date security. Data security is an area of joint responsibility for
CSPs and users. In addition, the multi-tenant nature of the cloud implies an interdependent security problem
for all users, and lends itself to class breaks (Arce 2020). Many, if not all, of the major CSPs are known to have
had critical cross-tenant vulnerabilities, thereby violating cloud isolation (Wiz 2023). Supply chain attacks
such as the Solar Winds intrusion allow malicious actors to effectively jump between tenants, as can faulty
or malicious code in execution environments like Platform-as-a-Service (PaaS). Multitenancy also facilitates
adversaries living off the same cloud as users because the traffic looks similar to CSPs.

We employ a dynamic game to characterize how shared security contributes to a CSP’s security umbrella.
By security umbrella we mean the way a CSP’s walled garden encourages users to conduct ever more value-
producing activities within the cloud because of their familiarity with operating within the walled garden, and
the tools CSPs provide for doing so. An example is a CSP employing homomorphic encryption to protect
users’ data and allow users to process their data without a key while using various applications.

Dynamic game theory differs from the dynamics associated with repeated games, where the same stage
game occurs in each period. Instead, in a given period a CSP’s and its users’ security contributions, along with
users’ usage of the CSP to create value, may lead to a different game in the subsequent period. Specifically, such
choices lead to different states of security and vulnerability in the Markov sense. Given the general dynamic
structure of the game under analysis, the approach does not lend itself to explicitly deriving equilibrium
strategies or payoffs unless we make strong assumptions about the underlying payoffs. We do not employ such
restrictions; the payoff functions in our game are additively separable but are not linear in past, current, or
future states. Consequently, equilibrium strategies and payoffs are not derived; instead, we characterize them
in terms of Markov Perfect Equilibrium and the associated Euler equation. In a dynamic game, strategies are
linked over time and the Euler equation characterizes the evolution of CSP vulnerability given optimal dynamic
behavior by CSPs and their users. The Euler equation is useful for characterizing long-term convergence and
patterns in CSP vulnerability. These are timely and important issues, given the economics of the cloud are
inherently dynamic.

Specifically, operating in the cloud is a decision to trade fixed costs for variable costs, where the latter
are determined over time on a pay-as-you-go basis, thereby providing flexibility for on-demand variations in
capacity at a granular level. Trading fixed costs mean users substantially scale back on fixed IT investments and
current in-house capacity in order to avoid losses from being over or under IT capacity. Capital expenditures
are replaced by operating expenses to better align costs with the dynamics of resource demands. Choosing the
cloud is therefore a dynamic strategy for users because cloud usage is meant to bear fruit over time through

3One of the proposed solutions is, “Verify all cloud-based virtual machine instances with a public IP do not have open Remote
Desktop Protocol (RDP) ports. Place any system with an open RDP port behind a firewall and require users to use a VPN to
access it through the firewall.”
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continued reliance on cost savings in the cloud. In view of this, cloud users do not cycle between cloud and
enterprise environments on a transitory basis; the economics of neither would pay off. Hence, in contrast to a
one-time either/or analysis of cloud/enterprise choice, our users are in the cloud and expect to be in the cloud
for the foreseeable future.

As such, if the likelihood a user persists in the cloud for the next period is nonzero for every period, then
an infinite horizon model is appropriate because neither the user nor the CSP can say with certainty when
their relationship will end. In addition, CSPs’ profits increase when users increase usage, and users only
increase usage if they are convinced about operating under the security umbrella. If usage changes over time
the Markovian states of security and vulnerability change as well. Such a modeling approach is consistent
with the current reality in which, in any given month, 20 percent of an organization’s cloud attack surface is
taken offline and replaced with new or updated services (Palo Alto Networks 2023). Again, this rules out a
repeated game approach, where the states do not change by definition, in favor of a dynamic game approach,
which is the modeling environment we investigate. Moreover, once committed to the cloud, a user’s next-best
alternative is another CSP. Over time, CSPs are therefore also in the business of keeping their users from
switching to another CSP and getting users from other CSPs to switch to them, which is another dynamic
facet of our model corresponding to cloud economics.

In particular, the security umbrella produces a form of lock-in different from using security and tamper-
resistance to explicitly hinder users’ ability to switch CSPs (e.g., Anderson 2001, Lookabaugh and Sicker
2004, Arce 2022). Such lock-in is anti-competitive (Asghari, van Eeten, and Bauer 2016, Opara-Martins,
Sahandi, and Tian 2014, 2016), causing users to employ anti-lock-in strategies such as hybrid clouds, cloud
management providers or brokers, and regular manual data exportation (Arce 2022). In such scenarios, the
CSP works toward lock-in and users against it. By contrast, we study an environment corresponding to a CSP’s
and its users’ contributions to shared security to create a security umbrella enhancing the value proposition
for users. This is in the interest of both users and CSPs. Finally, a thriving user or CSP may become a more
attractive target for malicious actors.

We derive our findings by exploiting the no-switching criterion used both in analyses of lock-in in IT
(e.g., Shapiro and Varian 1998, Varian 2004) and, more recently, in platform economics. Specifically, the no-
switching criterion is a means for establishing conditions necessary for non-monopolistic outcomes in platform
(or two-sided) markets (e.g., Lee 2014, Arce 2020). From the two-sided markets perspective, cloud services
such as infrastructure as a service (IaaS) and Software as a Service (SaaS) are examples of platforms in addition
to platform as a service (PaaS). By observation, most platform markets, and certainly the market for CSP
services within the cloud stack, are not monopolistic. In our model two CSPs compete by providing a security
umbrella they and their users contribute to. The no-switching constraint both places economic pressure on a
CSP’s security provision and enables the characterization of a non-monopolistic equilibrium outcome where
CSPs coexist. In invoking the no-switching criterion we do not deny users switch CSPs – they clearly do.
Nevertheless, the no-switching criterion has the dual benefit of formalizing how lock-in occurs owing to user’s
value-added from the resulting security umbrella, and placing CSPs within a competitive structure where
security is costly but economically necessary to reduce the potential for users to switch.

Our analysis yields several novel findings. First, after specifying the model itself, a user’s investment in
security and that of other users and its CSP are shown to be strategic substitutes. Strategic substitutes is a
property of best replies indicating it is optimal for a user to decrease its security investment if other users or its
CSP increase theirs. While strategic substitutes is somewhat expected, the way others’ security investments
directly affect a user’s per-period payoff function varies according to the degree a user is locked-in under a
CSP’s security umbrella. Specifically, if a user is not locked-in, others’ security investment increases a user’s
per-period payoff function (known as plain complements). However, over time a user’s per-period payoff can
decrease in others’ security investments (known as plain substitutes) because security investments build on
each other, thereby increasing the potential for a user to be locked-in under the CSP’s security umbrella.

Second, future vulnerability affects a user’s current-period decisions regarding its security investment and
CSP usage. Specifically, without consideration of future vulnerability the components of current-period vul-
nerability change in terms of more current-period usage and less current-period security investment. Indeed,
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our characterization of the equilibrium via an Euler equation shows current-period restraint in recognition of
its implication for future vulnerability keeps the time path of cloud vulnerability from exploding. The message
for managers of CSP users is decisions regarding both security and usage should account for their relationship
with each other and their implications for future vulnerability.

Third, CSP usage increases with the accumulation of security. The direct implication for CSP man-
agers is security is part of the CSP’s value proposition, which is based on usage fees. A more subtle but
highly consequential implication is security creates previously unidentified selective incentives (private bene-
fits). Specifically, any contribution enhancing the security umbrella – a local public good for the CSP and
its users – also increases usage, which is a private benefit. It therefore follows that the benefit need not stem
only from a user’s own contribution to security. In particular, other users’ or the CSP’s security investment
increases a user’s private benefit stemming from increased usage. As the extant literature often focuses on the
publicness of cybersecurity or its associated externalities, this private benefit has largely gone unacknowledged.
Cloud security is therefore an impure public good.

Originating with Olson’s (1965) seminal treatise, The Logic of Collection Action, selective incentives as-
sociated with the provision of public goods are known to increase voluntary contributions. Within groups,
the public benefit is often called a collective benefit and the selective incentive is a noncollective benefit. For
example, lobbying by AARP (a collective benefit for all U.S. retirees) is funded by AARP member contribu-
tions, and offering private benefits to contributing members, such as discounted insurance and vacation tours,
is a noncollective benefit. A non-monetary example is the “warm glow” an individual may get as a form of
private psychic benefit from voluntarily contributing to a public good. The combination of public goods with
selective incentives is known as impure public goods or joint products because the process of creating the public
good results in both public and private benefits (Buchholz and Sandler 2021). International security alliances
are among the most widely-studied examples of impure public goods. The security created for members of
the alliance is the public good. The ability of domestic troops to not only defend alliance members but also
conduct nonmilitary activities such as disaster relief in the homeland is a selective incentive. Similarly, the
presence of selective incentives stemming from contributions to the security umbrella make the environment
more conducive to collective action. Yet the resulting increasing usage due to increasing security also increases
vulnerability because increasing usage raises the CSP’s attractiveness to malicious actors. This distinction
between security and vulnerability does not exist in the economic literature on traditional security, but it is
part and parcel of cybersecurity at least since Gordon and Loeb (2002).

We analyze the shared provision of cybersecurity within a group of users and their CSP, which competes
with another CSP. As such, several contributions to the economics literature on public goods result. To begin,
contributions to shared security in the cloud produce the security umbrella, providing a public benefit to CSP
and users alike by reducing the probability of a breach. Furthermore, users and CSPs conduct their business
under the security umbrella. Such business benefits are private to each entity. Yet the resulting joint products
are substantially different from the canonical economic model of selective incentives, where the private benefit
is directly linked to one’s own contribution and no one else’s. Here, lowering the probability of a breach is the
public benefit, and the private benefit – generating profit under the security umbrella – is not limited to the
contributor. Hence, the private benefit is less selective in terms of accruing to the contributor only, but the
analysis remains within the categories of impure public goods and joint products. This is the special nature
of the benefits of cybersecurity; it is unlike other forms of product differentiation in that cybersecurity is the
public good protecting both the private benefits users receive from using their CSP and the CSP’s ability to
generate its own private benefits by charging for the usage that creates users’ benefits. AWS’s stance that
security is a major component of the cloud rather than an auxiliary operation (Gariba and Van Der Poll 2017)
is consistent with this view.

In addition, the dynamic environment differs from the usual settings for examining impure public goods.
In a single-shot setting, players do not base their actions on the past history of playing the game or consider
the future implications of their actions on another iteration of the game. In a repeated-game setting the same
stage game occurs in each period; hence, by definition, the players’ strategies cannot change the Markovian
state – the vulnerability of the CSP and its users, and the level of security – over time. By contrast, the
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dynamics of our analysis allow for the Markovian state to change, making the model one of dynamic joint
products (impure public goods over time). Consequently, players’ strategies are both a function of the past
history of play and how current decisions influence the future state of play. Private benefits (profits) earned
under the security-umbrella-as-public-good change over time as well. The result is a novel form of time-path
complementarity between usage and shared security measures. Together, results on the state-space dynamics
of security and vulnerability in the cloud, combined with our contribution to the economic theory of public
goods, imply cloud security is an atypical form of impure public good, wherein individual contributions to
bolster CSP security endow a selective benefit on others, thereby increasing usage but also exacerbating CSP
vulnerability over time.

We now turn from the public goods-security nexus to a fourth contribution of the paper: the welfare
implications of the shared security paradigm are somewhat startling. Specifically, user lock-in is often viewed
negatively. Hence, the idea that a CSP’s security umbrella may lead to lock-in is concerning. Indeed, we
show users can be locked-in by a less-secure more-vulnerable CSP owing to users’ familiarity with the CSP’s
security umbrella. At the same time, however, the level of security required to lock-in users can exceed the
level of security necessary to satisfy users’ participation constraint. This is a welfare-improvement for users
caused by the lock-in produced by the CSP’s contributions to the security umbrella in order to keep users
from switching. The reasoning has to do with CSP security competition resulting in strategic complements, a
phenomenon we now turn to.

Thus far the contributions of the paper are stated in terms of CSP-user and user-user relationships. As we
also consider CSP competition, a fifth contribution is the finding that the level of security of a CSP’s competitor,
and the level of security necessary for a CSP to continue existing (satisfy the no-switching constraint for its
users) are strategic complements. The implication is in each period CSPs change their optimal level of security
investment in the same direction. Importantly, CSP security competition is tempered; it is neither a race to
the bottom, because security must satisfy the no-switching constraint, nor a war of increasing security levels,
because a CSP need only partially increase its security in response to increased security by its competitor
owing to user lock-in under its security umbrella.

The analysis proceeds as follows. We survey closely-related research in section 2 and present our model in
section 3. Section 4 focuses on the optimal path of accumulated vulnerability stemming from users’ optimal
CSP usage under the security umbrella. Since the path need not converge to a stationary state, we analyze
the path of vulnerability in equilibrium. We further characterize user behavior along the CSP’s time path of
vulnerability. In so doing we provide a novel characterization of security in the cloud as a form of impure public
good. In Section 5 we address whether CSP security competition can improve the situation. We present results
setting the requirements on the security umbrella to function as a form of lock-in, how the security umbrella
determines the non-monopolistic nature of CSP markets, and creates welfare improvements for users. Section
6 concludes with implications for managers, social planners, regulators, and potential extensions. In total, the
message is not only is the cloud a joint security environment, it is a dynamic joint security environment.

2 Related Literature

The relationships between CSPs and their users are undeniably complex. This is further complicated by the
actions of malicious actors when it comes to cloud security. Consequently, all theoretical analyses of the
cloud, including ours, focus a magnifying glass on the facets of interest in order to better understand their
contribution to the broader picture. This section reviews related studies our analysis builds upon in order to
capture the shared security implications of ongoing competition between CSPs and continuing relationships
between CSPs and their users. Furthermore, like ours, these studies of the cloud are expressed in terms of
economic relationships rather than in terms of the underlying hardware and software architectures of the cloud.

For example, in August, Niculescu, and Shin (2014) the facet under magnification is the difference between
the externality associated with indirect attacks on users within an organization employing patchable on-site
software versus the externality associated with directed attacks on organizations subscribing to the SaaS
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version. Our study complements their focus on the patching actions of on-site software users by instead
examining the security interaction between CSPs and CSP users, consistent with taking shelter in the cloud.
Furthermore, their game is dynamic as it is in extensive (multi-stage) form, while the time dimension is static
as the game is played but once (single-shot). It is consistent with an either/or decision to use on-site software
or its cloud version. By contrast, we study a game in extensive form with a time dynamic meant to capture
the continuing relationship between CSP and user, consistent with cloud economics, and additionally consider
the possibility users may switch CSPs. Hence, the extensive form played at any point in time varies according
to the state variables determined by prior play.

In contrast to the August, Niculescu, and Shin (2014) analysis of on-site versus SaaS versioning within
a monopoly setting, Zhang, Nan, and Tan (2020) consider security and customization competition between
on-site software and SaaS monopolies. SaaS is less customizable than its on-site competitor and involves a
usage fee. These two facets discourage usage in such a way that a high security loss environment leads to
lower expected losses for SaaS users as compared a low security loss on-site environment with greater usage.
The implication for the on-site vendor is, in low-loss environments, security and customization are substitute
inputs, but under high-loss environments they are complementary inputs. Once again, the analysis is in terms
of a single-shot extensive form game. It implies a negative security externality only, while the time dynamics
under investigation in our analysis additionally allow for both the possibility of switching and for benefits
(selective incentives) to accrue from continued operation under a CSP’s security umbrella. The latter can lead
to lock-in, which again is a dynamic phenomenon.

While the competitive environments of August, Niculescu, and Shin (2014) and Zhang, Nan, and Tan (2020)
consider a single monopoly producing on-site and cloud versions, or an on-site monopoly competing with a
cloud monopoly, two studies consider the role of cybersecurity in determining non-monopolistic outcomes. Arce
(2020) subjects security to the same two-sided market disciplinary forces shaping a CSP’s pricing structure
and other strategies. In particular, security must satisfy (i) no-switching constraints for users, and (ii) CSP
incentive compatibility constraints that are functions of the cross-platform distribution of users. Security, or
lack thereof, is an influential predictor of users’ switching behavior (Wilms, Stieglitz, and Mäller 2018). By
comparing the level of security to keep current users from switching with the level of security needed to acquire
additional users, Arce (2020) characterizes when a CSP market is imperfectly competitive versus monopolistic.
The novelty is the characterization is in terms of security; i.e., a symbiosis exists between CSP market structure
and security. The dynamics considered are coalitional (relating to whether users switch or not). There is no
time dimension.

By contrast, Sen, Verma, and Heim (2020) consider a coupled pair of differential equations for the market
share of competing software vendors. The rate of change of a vendor’s market share is increasing in the
adoption rate of new users ‘birthed’ into the market. It is decreasing in the rate of existing users switching
to the competition, and increasing in the rate of users switching from the competition, with the propensity
to switch given exogenously. Finally, the amount of hacking directed at the vendor restrains market share.
Monopoly is possible with or without hacking, but imperfect competition is only possible under the presence
of hackers. Hence, rather than viewing hackers as unilaterally bad their presence can foster competition within
the software market. Here, competition means vendor coexistence or what Arce (2020) calls an interior solution
to the market structure problem. In Sen, Verma, and Heim (2020) there are differences in hacker propensities
to target a particular vendor but no competition in terms of costly vendor investment in cybersecurity over
time. Our study includes the latter.

More-to-the-point, security-enhancing actions are not part of cloud users’ strategy sets in August, Niculescu,
and Shin (2014), Arce (2020), Sen, Verma, and Heim (2020), or Zhang, Nan, and Tan (2020). In the present
analysis CSPs compete on the basis of security and their respective users take security-enhancing actions, as
prescribed by users’ and CSPs’ shared responsibilities, CSA’s security guidance, and Crowdstrike’s and Palo
Alto’s Network’s’ characterizations of the cloud-as-attack-surface.
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Table 1: Notation
Definition

scspj,t CSP j’s strategy: security investment in period t
si,t User i’s strategy: security investment in period t
α marginal contribution of the CSP j’s security investment
k Per unit cost from security investment for a user
K Per unit cost from security investment for the CSP
yi,t User i’s strategy: cloud service usage in period t
b(yi,t) Non-security related net benefit from using yi,t for a user
B(yi,t) subscription profit from user i for the CSP
Sj,t State Variable: accumulated security investment on CSP j
Si,t State Variable: accumulated security investment by user i
Scspj,t State Variable: accumulated security investment by CSP j
Vj,t State Variable: accumulated vulnerability on CSP j
p(Vj,t) Probability of a successful attack on user i on CSP j
p̃(Vj,t) Probability of a successful attack on CSP j
c Per unit cost of a successful attack for a user
C Per unit cost of a successful attack for the CSP
vj,t marginal vulnerability attributed to user i
1− δS Depreciation Speed (decay rate) of past security investment
1− δV Depreciation Speed (decay rate) of past vulnerability
δ Discount factor for the optimal value function
λ Per unit switching cost
ui,t User i’s per period payoff in period t
Ui,t User i’s lifetime payoff at the end of period t
πj,t CSP j’s per period payoff in period t
Πj,t CSP j’s lifetime payoff at the end of period t

3 The Model

Our focus is on how security-enhancing actions of CSPs and their users create a security umbrella under
which users determine whether they stay with their CSP or switch, and the degree they use their chosen
CSP. Given users’ potential to switch, CSPs compete on the basis of platform benefits and how the security
umbrella facilitates continued access to such benefits. Upon choosing a CSP, users determine the extent they
do business while using their CSP as a platform. Together, overall security effort and usage determine a CSP’s
vulnerability; i.e., its appeal to malicious actors based on the security umbrella and level of business activity
occurring under it.

Table 1 lists the notation for the variables in our analysis. The model itself is presented and explained
below.

3.1 Players

Two CSPs and N(N = 2n) identical cloud service users exist in the market. Initially (t = 0), n random
users are subscribers of CSP 1, and the other half are subscribers of CSP 2. A duopolistic setting facilitates
a competitive environment under which CSPs realize security is not only a technical issue, but affects users’
decision to stay with their incumbent CSP or switch. Security is thereby a determinant of CSPs’ competitive
environment (Arce 2020, Sen, Verma, and Heim 2020). This provides insights for other kinds of CSP markets
(e.g., oligopoly) as well.
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Table 2: Compete in Security: Security Services by Cloud Service Providers
CSP Security Services

Azure Microsoft Defender for Cloud, Microsoft Sentinel, Azure Key Vault, Azure Monitor logs, Azure Dev/Test Labs, Azure Storage Service
Encryption, Azure StorSimple Virtual Array, Client-Side encryption for blobs, Azure Storage shared access signatures, Azure Storage
Account Keys, Azure File shares, Azure Storage Analytics, Azure SQL Firewall, Azure SQL Connection Encryption, Azure SQL Always
Encrypted, Azure SQL transparent data encryption, Azure SQL Database Auditing, Virtual network rules, Azure role-based access control,
Azure Active Directory, Azure Active Directory B2C, Azure Active Directory Domain Services, Azure AD Multi-Factor Authentication,
Azure Backup, Azure Site Recovery, Network Security Groups, Azure VPN Gateway, Azure Application Gateway, Web application firewall,
Azure Load Balancer, Azure ExpressRoute, Azure Traffic Manager, Azure Active Directory Application Proxy (Azure AD), Azure Firewall,
Virtual Network service endpoints,, Azure Private Link, Azure Bastion, Azure Front Door, Azure DDoS Protection, Azure Information
Protection, Microsoft Intelligent Security Graph API

AWS 2017 Security Services Current Security Services
AWS Certificate Manager, Amazon Cloud Directory, AWS
CloudHSM, AWS Directory Service, AWS Artifact, AWS Iden-
tity and Access Management (IAM), Amazon Inspector, AWS
Key Management Service (KMS), AWS Organizations, AWS
Shield, AWS Web Application Firewall (WAF)

AWS IAM Identity Center, AWS Organizations, Amazon In-
spector, AWS WAF, AWS Shield, AWS Artifact, AWS Key
Management Service (KMS), Amazon GuardDuty, AWS IoT De-
vice Defender, Amazon CloudWatch, Amazon Cognito , Event-
bridge, AWS Security Hub, Amazon Macie, AWS Private Certificate
Authority, AWS Secrets Manager, Amazon Detective, AWS Audit
Manager, AWS CloudTrail

Google 2020 Security Services Current Security Services
Cloud Security analytics and operations, Application security Chronicle security analytics and operations platform, Web App and

API Protection (WAAP), Security Foundation, Risk and compliance
as code (RCaC), Security and resilience framework, Software supply
chain security, Risk Protection Program

Notes: The table lists examples of current security services on AWS, Azure, and Google Cloud from their website. Access time: July 17th, 2023. The
comparison of early-on security services is done by using the Wayback Machine Internet Archive.

3.2 Strategies and Timing

Figure 1 summarizes the timing of the game in each period. After the initial period, users start each subsequent
period, t > 0, by choosing to stay with their CSP or switch. From a technical perspective, this avoids the
need to invoke a fulfilled expectations equilibrium, whereby users and the CSP make decisions based on the
expected number of users, with such an expectation required to be fulfilled ex-post without specifying how
it comes about or the associated information structure. By contrast, our solution concept is Markov Perfect
Equilibrium, whereby the state variables – security and vulnerability – determine the information structure
upon which players condition their strategies. As shown below, both security and vulnerability are functions
of the number of users of a CSP. Consequently, once users are allocated to their CSP (in period t = 0) or
choose their CSP (in t > 0), CSPs j ∈ {1, 2} choose their security investment, scspj,t, given their number
of users. This determines the “out-of-the-box” baseline level of security, which is, of course, susceptible to
zero-days and may be otherwise augmented or compromised by user behavior.

Given scspj,t, users follow by determining their security investment, si,t. Part of what goes into si,t are user
configurations and permissions, which are known to be prime determinants of security. Another part of si,t
is assessing what is meant by the CSP’s out-of-the-box security each time the CSP updates. For example, in
mean time before failure, when CSPs develop a new cloud service, users devote $si,t’s worth of hours testing its
security or paying a third-party validator to do so. Users can also test new versions of the service as released,
spending $si,t’s worth of hours or again pay a validator to do so. Another example is the life cycle of security
architecture. Initially, CSPs invest in providing security to users, scspj,t. Users can then choose to re-architect
their security system or purchase security services from their CSP, spending si,t in total. The security services
provided by Amazon Web Services, Microsoft Azure, and Google Cloud are listed in Table 2.

After these steps determine the security umbrella, users purchase yi,t units of cloud services based upon
their configurations given the current state of security.

3.3 State Variables and Information

Our analysis revolves around two payoff-related state variables: accumulated security investment and accumu-
lated vulnerability. The states summarize the history in previous periods and directly figure into current-period
payoffs.

Given individual security investments in period t by user i of CSP j, si,t, and the security investment by
its CSP, j, scspj,t, state variable total accumulated security investment on CSP j at the end of period t, Sj,t, is
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Direction of solution

Decision Timeline

Switching Decision

CSP Out of box Security

User Security

Usage Decision

User i on CSP j decides whether

to stay or switch to CSP j′

CSP j decides on the level of

security investment, scspj,t

Users decide the level of their
security investment, si,t, as well,

partially through the configuration process

Once cloud security and configurations are set,

users make their cloud usage decision, yi,t

Figure 1: Timing

Sj,t =

t∑
τ=0

∑
i

δτS [αscspj,τ + si,τ ] = si,t + αscspj,t +
∑
i′ ̸=i

si′,t + δSSj,t−1 (1)

where 1 − δS ∈ [0, 1] is the depreciation speed (decay rate) of past security investment. The term α > 0
recognizes the CSP’s security efforts can have a different marginal effect on overall security relative to users’
efforts. Tianfield (2012) identifies how this relative effect can vary across IaaS, PaaS, and SaaS, causing the
security responsibilities of CSP and users to differ between service layers of the cloud stack. Similarly, the
MITRE ATT&CK© matrix for the cloud includes phenomena under the purview of CSPs and users that differ
between layers in the cloud stack. Hence, α is not indexed by subscript j because it corresponds to the relative
contribution of a CSP within a particular class of service (layer within the cloud stack), rather than across
different classes of service. In equilibrium, we conduct comparative statics with respect to α.

Taking the effect of the CSP and users’ security contributions to be a function of their aggregate sum is
in keeping with regarding the cloud as the attack surface. An alternative is security is determined by the
minimum contribution, known as the weakest link. Yet evidence drawn from data and observations from
real-world cyberattacks indicates an impressive diversity of tactics, techniques, and procedures (TTPs) on
the part of cloud adversaries (Crowdstrike 2023). Examples of cloud penetration TTPs include exploiting
insecure CSP default settings, user misconfigurations, containers without internal security, corporate subnets
without multifactor authentication (MFA), open ports or servers to conduct a Man-in-The-Cloud attack, and
abuse of cloud resources, such as occurs with coin mining. Indeed, even misconfigurations have variations such
as excessive permissions, disabled logging features, and publicly accessible cloud storage buckets. Similarly,
the proliferation of API calls and privileges available to control API access broadens the attack surface. A
summation aggregator indicates the extent CSPs and users’ address the multiplicity of security issues inherent
in the cloud. It therefore follows that subsequent states of security are also derived from the (discounted) sum
of past security actions.4

4Moreover, Hausken (2002) draws a parallel between weakest link and serial networks, and the cloud is not a serial network
because, by design, redundancy and location independence are part of a CSP’s selling points. In addition, Florêncio and Herley
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Total accumulated security investment on CSP j at the end of period t, Sj,t, can also be written as the sum
of CSP j’s accumulated security investment, Scspj,t, and user’s accumulated individual security investment,
Si,t.

Sj,t = αScspj,t +
∑
i

Si,t

where Scspj,t =
∑t

τ=0 δ
τ
Sscspj,τ and Si,t =

∑t
τ=0 δ

τ
Ssi,τ .

Our second state variable concerns vulnerability. A CSP’s ex-ante vulnerability is a function of the security
of the CSP, users’ attractiveness to malicious actors, the CSP’s attractiveness to malicious actors, and malicious
actors’ effort (Gordon and Loeb 2002, Cavusoglu, Raghunathan, and Yue 2014, Fedele and Roner 2022). Given
we do not have an active malicious actor in the game, ex-ante vulnerability is mainly a measure of target
attractiveness to malicious actors. A flourishing CSP with a growing number of users is more attractive ex-
ante, with all their personally identifiable information, proprietary secrets, pass-codes, ransomware prospects,
and business disruption opportunities at risk. It also agrees with the market share theory of malicious targeting
(O’Donnell 2008, Garcia, Sun, and Shen 2014, Vasek, Wadleigh, and Moore 2015, Arce 2018, Geer, Jardine, and
Leverett 2020), whereby platforms with larger relative market share receive at least their share of targeting
by malicious actors. At the same time, ex-post vulnerability is also a function of CSP’s and their users’
security investment. Consequently, in period (stage) t, given ex-ante Vj,t−1 the ex-post marginal vulnerability
attributed to user i, vi,t, is:

vi,t = yi,t − si,t,

Given users i of platform j, state variable total accumulated (ex-post) vulnerability on platform j at the
end of period t is defined as

Vj,t =

t∑
τ=0

∑
i

δτV [(yi,τ − si,τ )︸ ︷︷ ︸
vi,τ

−αscspj,τ ]

Vj,t = δV Vj,t−1 +
∑
i′ ̸=i

yi′,t + yi,t − Sj,t (2)

where 1 − δV ∈ [0, 1] is the depreciation speed of past vulnerability. In contrast to our justification of cloud
security as a summation-determined public good, expressing the vulnerability state variable in terms of the
sum of individual user vulnerability is a simplifying assumption. Vulnerability is taken to be a function of the
concentration of resources using the CSP, net of security. Nonlinearities with respect to vulnerability instead
arise within users’ and CSPs’ payoff functions. Moreover, in many extensions of the Gordon-Loeb (2002)
decision-theoretic model to a game-theoretic setting the level of vulnerability is taken as a parameter open to
ex-post comparative statics analysis (Fedele and Roner 2022). By contrast, here the level of vulnerability is
an endogenously-determined state variable.

Finally, in a Markov Perfect Equilibrium the state variables determine the information structure upon which
players condition optimal strategies. At the beginning of state t the players know the pair (Vj,t−1, Sj,t−1). In
addition, the number of potential state pairs, (Vj,t, Sj,t), is finite. This is a standard assumption necessary for
existence of a Markov Perfect Equilibrium.

3.4 Cybersecurity

Beginning at least with Gordon and Loeb (2002) the probability of a successful attack is a function of ex-
post vulnerability, p(Vj,t), rather than only as a function of total security effort, p(Sj,t). In expressing the

(2013) show once a single attacker versus a single defender with a weakest link is extended to the case of a population of users
attacked by a population of malicious actors, as is the case in the cloud, the underlying weakest-link aggregator is converted into
a summation aggregator of security effort.
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probability of a successful attack in terms of vulnerability we capture the effects of its components, si,t, scspj,t,
and yi,t, on cloud security. It easily holds at the extreme, where governments having large Vj,t’s are targeted
by advanced persistent threats (APTs) with the commensurate effect on p(Vj,t). At the same time, security
efforts reduce vulnerability, Vj,t, and therefore the probability of a successful attack.

We define p(Vj,t) to be monotonically increasing and convex in Vj,t. The accumulated vulnerability of
platform j determines every user’s probability of being attacked. It is intentionally modeled in this way
to capture the multi-tenant nature of cloud services, where one user’s security can impact their co-tenants’
security. Critical cross-tenant vulnerabilities violating cloud isolation are increasingly documented (Wiz 2023).
By contrast, term p̃(Vj,t) is the probability the CSP suffers a successful attack as a function of ex-post
vulnerability. It satisfies the same monotonicity and convexity assumptions as p(Vj,t).

3.5 Payoffs

A user’s payoff at time t has several components: the benefit from using cloud services under the CSP’s
security umbrella; the probability of a successful material attack on this benefit; the cost incurred from a
material impact; security investment costs; and the cost incurred from a possible platform switch:

ui,t = p(Vj,t)[(1− c)b(yi,t)] + (1− p(Vj,t))b(yi,t)− ksi,t − λSj,t−1 (3)

ui,t = (1− p(Vj,t)c)b(yi,t)− ksi,t − λSj,t−1 (4)

where function b(yi,t) measures the net benefits arising from using yi,t cloud services under the security
umbrella. Benefit b(yi,t), b

′ > 0, b′′ < 0 captures every non-security related aspect stemming from the cloud
service (revenues gained from yi,t, the price of yi,t usage, etc.). Similar benefit functions facilitating analyses of
specific facets of a platform can be found in Lee (2014) and Arce (2020). Term c ∈ (0, 1) captures the percentage
cost of a successful attack and k the per unit (opportunity) cost from security investment. Contingent payoff
component λSj,t is the per unit switching cost, λ, times state variable Sj,t, the accumulated security investment
on the incumbent platform. It becomes part of a user’s payoff only if they switch CSPs. The idea is familiarity
with CSP j’s security umbrella makes it costly to switch to a CSP with a different security umbrella and
attendant protocols. In contrast to standard analyses where lock-in is the outcome of one actor’s actions,
usually the vendor, λSj,t is jointly determined by users and their CSP through Sj,t. An alternative is Arce
(2022), where users and their CSP interact to determine the marginal degree of lock-in, equivalent to λ in our
model. Here instead the magnitude of lock-in is jointly determined. Finally, the expression shows security is
not just another dimension of product differentiation. The security umbrella is the gateway to the benefits
associated with a CSP’s services, b(yi,t). Specifically, a decrease in the probability of a successful breach owing
to the actions of any user creates a selective incentive for other users in the form of (1− p(Vj,t)c)b(yi,t).

CSP j’s per-period payoff takes a similar form:

πj,t = p̃(Vj,t)[(1− C)nB(yi,t)] + (1− p̃(Vj,t))nB(yi,t)−Kscspj,t (5)

πj,t = (1− p̃(Vj,t)C)nB(yi,t)−Kscspj,t (6)

Terms K > 0 measures the CSP’s per-unit cost of security investment and C ∈ (0, 1) the CSP’s per-unit
cost of a successful attack. Function nB(yi,t) measures the profit generated by n users’ subscription to the
CSP. As is the case for b(yi,t), nB(yi,t) summarizes all non-security aspects of providing cloud services. Given
C ∈ (0, 1), CSPs always want more users.

3.6 Equilibrium

We close our model by studying the symmetric Markov Perfect Equilibrium (MPE) of the game. A player’s
strategy in period t is Markov (or state-space) if its history-dependence is only a function of the information
provided by the values of the state variables at the start of period t, (Vj,t−1, Sj,t−1), rather than the entire
specifics of the past history of play. The number of strategies for a player is therefore not greater than
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the (finite) number of states, (Vj,t−1, Sj,t−1), rather than the number of potential histories. Moreover, the
exact time sequence {sj,τ , si,τ , yi,τ}t−1

τ=0 determining state (history) (Vj,t−1, Sj,t−1) does not matter. A Markov
strategy is stationary if, whenever (Vj,t−1, Sj,t−1) = (Vj,t̂−1, Sj,t̂−1), t ̸= t̂, then a player takes the same strategy
in state (Vj,t−1, Sj,t−1) as in state (Vj,t̂−1, Sj,t̂−1). That is, a player takes the same actions for the same state
values independently of the time of the state. The assumption is justifiable given our game’s infinite horizon.
Stationary strategies are Markov Perfect if they are subgame perfect for the game in stage t for every t. MPE
is a powerful tool for dynamic games because the state variables summarise both the history of play and the
information structure.5 Consequently, at the beginning of period t, users make strategic choices knowing the
values of Vj,t−1 and Sj,t−1, and their optimal value function only depends on the resultant states.

An advantage of our approach is extensive form games and repeated games are often sensitive to the
timing of actions in the (unvarying) stage game, resulting in phenomena such as first-mover advantages or Folk
Theorem-based indeterminacy. If the security or economic environment is not dynamic then the equilibrium
is more dependent on the decision dynamics. By contrast, in our analysis both decisions and the economic
environment are dynamic, consistent with cloud economics and the continuing relationship between CSPs and
their users. For example, our approach produces state-dependent actions with richer characterizations of how
strategic variables affect one another. This cannot be the case in a repeated game because in a repeated
game only one state occurs – the stage game. Moreover, we capture the two-way direction between security
investments and cloud usage over time. As such, best replies are truly reaction functions.

3.7 Initial Characteristics

We conclude this section by characterizing the strategic relationships among users and between users and their
CSP. Specifically, plain complements is a property of whether others’ strategies increase a player’s payoff, and
strategic substitutes is a property of best replies (Eaton 2002, chap.10); that is, whether the players’ strategies
move in opposite directions. The following propositions characterize whether an increase in the security
investments of other users or their CSP increases user i’s payoff (plain complements) and if it decreases user
i’s security investment and the rate it changes (strategic substitutes).

In the absence of lock-in (λ = 0), users’ and their CSP’s security investments are plain complements for

their stage t (per period) payoffs,
∂ui,t

∂si′ ,t
> 0 and

∂ui,t

∂scspj ,t
> 0. With finite lock-in costs, plain complements

requires:

b(yi,t)
∂p(Vj,t)

∂Vj,t
δtV > λδtS

Proof: all proofs are in appendix.
The condition for plain complements characterizes how competition between CSPs impacts the nature of

security investment. Suppose the switching cost does not bind. In that case, other users’ and the CSP’s efforts
to enhance security provide a public good to user i. By contrast, once switching cost λ binds, such efforts
may eventually be harmful if the marginal cost of their efforts in terms of lock-in, λδtS , exceeds the marginal

reduction in vulnerability they bring about, b(yi,t)
∂p(Vj,t)
∂Vj,t

δtV . In a world where δV is sufficiently lower than δS
the plain complements relationship is also broken. For example, if δS is large the decay speed of technology,
1 − δS , is so small only past security investment matters and current-period efforts do not figure much into
a user’s calculus. Overall, the novel implication is others’ security investments can be plain complements
(increase other users’ payoffs) at one point in time and plain substitutes (decrease other users’ payoffs) later
in the same game.

Other users’ security investments are strategic substitutes for user i’s security investment:

∂u2
i,t

∂si,t∂si′,t
< 0

5The game may have other non-MPE. However, if other players use stationary Markov strategies, player i’s best reply is to
use stationary Markov strategies as well.
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Term ∂ui,t/∂si,t derives a user’s best reply (reaction) function. Hence, the second derivative of the term
with respect to si′,t characterizes the user’s best reply function with respect to the security strategy of another
user, i′ ̸= i, and the second derivative with respect to scspj,t characterizes the user’s best reply function
with respect to their CSP’s security strategy. A negative sign means the user’s best response security effort
decreases in the security effort of other users, known as strategic substitutes.

Indeed, for the CSP’s security investment,
∂u2

i,t

∂si,t∂scspj,t
is also negative. The larger the CSP’s responsibility

for joint security for the service in question, α, the smaller is the user’s best reply to the CSP’s security
investment. That is, strategic substitutes between CSP and users is exacerbated.

∂u2
i,t

∂si,t∂scspj,t
= b(yi,t)δV

∂p2(Vj,t)

∂V 2
j,t

(−αδt) < 0

The larger α is the more the CSP’s security investment decreases the user’s marginal benefit of their own
security investment. While negative, users are not absolved from the joint security problem even though
the cloud service they contract for may require greater security responsibility on the part of the CSP. In
particular, the upper layer of cloud infrastructure (the control plane), which users are responsible for securing,
has increasingly become vulnerable to attacks introduced by misconfigurations and human error (Torkura et al.
2021).

Together, Propositions 3.7 and 3.7 epitomize the joint security problem. For example, 55 percent of respon-
dents to a Ponemon Institute survey of cloud users believe the in-house IT security leader is not responsible for
ensuring their organization’s safe use of cloud computing resources (Ponemon Institute 2014). To the extent
such beliefs may be rational on the part of users’, as indicated by Propositions 3.7 and 3.7, it is inefficient if
CSPs do not follow through with the tools at their disposal to aid users. For example, AWS knew Capital One
had the misconfiguration leading to their 2019 breach, but did not communicate it to Capital One or other
users with similar misconfigurations.

4 Locked-In Users

We begin with a baseline model where users are locked into their CSP. In this case, λ → ∞; therefore, users
do not switch CSPs and CSPs know it.

In dynamic games the players maximize their lifetime payoffs, which are the discounted sum of their payoffs
in each period, t. For user i of CSP j:

Ui,j =

∞∑
t=0

δtui,t(·)

where ui,t(·) is the payoff in period t, δ is the discount factor, and the horizon is infinite. An infinite horizon
captures the nonzero probability CSPs and their users interact for another period.

In an MPE, players’ payoffs are transformed into optimal value functions, which themselves are represented
as only a function of the state variables summarizing the history of play:

Ui,t = Ui,t(Vj,t−1, Sj,t−1)

State variables Vj,t−1 and Sj,t−1 are known at the start of period t. When users select their security investment
and usage in period t they do so understanding the joint effect on their current-period payoff, ui,t(·). In
addition, users are forward-looking and realize their choices figure into determining Sj,t and Vj,t. Given
discount factor δ, users select si,t’s and yi,t’s to maximize Ui,t(·) with these two effects in mind:

Ui,t(Vj,t−1, Sj,t−1) = max
si,t,yi,t

{ui,t(·) + δUi,t+1(Vj,t, Sj,t)} (7)

This is the familiar Bellman equation in dynamic programming expressed in terms of the user’s optimal value
function, Ui,t(Vj,t−1, Sj,t−1), current-period payoff, ui,t(·), and discounted continuation value, δUi,t+1(Vj,t, Sj,t).
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When finding a best reply, each player holds the strategies of the other players constant, and in an MPE oth-
ers’ strategies are additionally unchanging in they are also stationary in equivalent states. It therefore follows
equation (7) can be re-expressed in terms of the optimal value function at the given states without reference
to the time period:

Ui(Vj,t−1, Sj,t−1) = max
si,t,yi,t

{ui,t(·) + δUi(Vj,t, Sj,t)} (8)

Consequently, finding a best reply is a dynamic programming problem for each of the players (Friedman 1976,
Haurie et al. 2012). This is because when finding a best reply, player i holds the strategies of the other players
constant; e.g., ∂yi′,t/∂yi,t = 0 ∀i′ ̸= i.

The solution to (8) must also be subgame perfect within period t. Figure 1 lays out our solution procedure.
Usage, yi,t, is chosen last; hence, by backward induction we solve for it first. With respect to δUi(Vj,t, Sj,t),
Vj,t is a function of yi,t via state equation (2). Given the expression for ui,t(·) in (4), the associated first-order
condition is

∂Ui(Vj,t−1, Sj,t−1)

∂yi,t
= (1− p(Vj,t)c)

∂b

∂yi,t
− cb

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂yi,t
+ δ

∂Ui(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂yi,t
= 0 (9)

Setting ∂b/∂yi,t = b′ and substituting ∂Vj,t/∂yi,t = 1 (from equation (2)):

∂Ui(Vj,t−1, Sj,t−1)

∂yi,t
= (1− p(Vj,t)c)b

′ − cb
∂p(Vj,t)

∂Vj,t
+ δ

∂Ui(Vj,t, Sj,t)

∂Vj,t
= 0 (10)

where
∂Ui(Vj,t,Sj,t)

∂Vj,t
is unknown.

Equation (10) is the best reply function (reaction function) for yi,t in implicit function form. Prior to ana-

lyzing this function, unknown term
∂Ui(Vj,t,Sj,t)

∂Vj,t
needs to be characterized. To this end, we follow Benveniste-

Scheinkman’s (B-S) procedure (Benveniste and Scheinkman 1979), as operationalized in the proof of lemma
4.

A user’s optimal value function decreases in total vulnerability at an increasing rate:

∂Ui(Vj,t−1, Sj,t−1)

∂Vj,t−1
= −δV (1− p(Vj,t)c)b

′ < 0

∂2Ui(Vj,t−1, Sj,t−1)

∂V 2
j,t−1

= δ2V
∂p(Vj,t)

∂Vj,t
cb′ > 0

where c ∈ (0, 1) and b′ > 0. Updating ∂Ui(Vt−1,St−1)
∂Vj,t−1

one period yields:

∂Ui(Vj,t, Sj,t)

∂Vj,t
= −δV (1− p(Vj,t+1)c)b

′ < 0

which is the unknown term in equation (10).
By characterizing the final term in equation (10), we establish CSP users must consider both the effect of

usage on the probability of a breach, the second term in equation (10), and the future effect of usage on their
value function, the third term in equation (10). Both effects subtract from the benefits of current usage, as
expressed by the first term in equation (10). Moreover, these effects are not constant from period-to-period.
It begs the question of how these rates of change balance (or not) as reflected by the time path of vulnerability
resulting from optimal usage and security; i.e., an Euler equation.
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Figure 2: Vulnerability Conditions
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4.1 The Euler Equation

Our model is quite general; no functional forms are specified for per-period payoffs, the probability of a
breach, and so on. In such circumstances, the Euler equation assists in characterizing the associated dynamics
(Josa-Fombellida and Rincón-Zapatero 2008, Dechert 1997). Here, the Euler equation shows the relationship
between optimal levels of Vj,t and Vj,t+1. In deriving the Euler equation, we characterize the optimal path of
accumulated vulnerability. The path of users’ behavior is addressed in the next subsection. Moreover, neither
extensive form games nor repeated games generate an Euler equation as an output. The Euler equation is an
advantage of the dynamic game approach.

Substituting the value for ∂Ui/∂Vj,t from lemma 4 into the first-order condition (reaction function) for yi,t
in equation (10) immediately yields the Euler equation for the dynamics of accumulated vulnerability.

The Euler equation for the optimal level of accumulated vulnerability is

∂Ui(V
∗
j,t−1, Sj,t−1)

∂V ∗
j,t−1

= δV

[
−bc

∂p(V ∗
j,t)

∂V ∗
j,t

+ δ
∂Ui(V

∗
j,t, Sj,t)

∂V ∗
j,t

]
(11)

where
∂p(Vj,t)
∂Vj,t

> 0 and
∂p2(Vj,t)

∂V 2
j,t

> 0.

From lemma 4 and shifted down one period, the Euler equation can also be expressed as

(1− p(V ∗
j,t−1)c)b

′(yi,t−1)− b(yi,t−1)c
∂p(V ∗

j,t−1)

∂V ∗
j,t−1

= δδV (1− p(V ∗
j,t)c)b

′(yi,t) (12)

The Euler equation lends itself to several characterizations of our model. One way to view the Euler
equation is as the intertemporal relationship between the marginal costs of accumulated vulnerability in the
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current and future periods (McKay, Nakamura, and Steinsson 2017). From equation (11), term −δV bc
∂p(V ∗

j,t)

∂V ∗
j,t

<

0 measures the extent current vulnerability influences optimal vulnerability by increasing the likelihood of a

breach. Term δ
∂Ui(V

∗
j,t,Sj,t)

∂V ∗
j,t

< 0 measures the extent future vulnerability influences optimal vulnerability.

Hence, in the absence of future vulnerability considerations, current vulnerability is too high. In other words,
a non-dynamic (single-shot) approach leads to excessive vulnerability in each period.

Another way to view the Euler equation is from the perspective of the interim equilibrium when users
maximize their value function by choosing yi,t. In this subgame, equation (12) characterizes the optimal path
of accumulated vulnerability. On this path, given a certain level of V ∗

j,t−1, the left-hand side of equation (12) is

constant, and the equilibrium level of V ∗
j,t can be predicted by V ∗

j,t−1, provided inverse function p−1(·) exists.
The equilibrium path of accumulated vulnerability is

∂V ∗
j,t

∂V ∗
j,t−1

=
b′(yi,t−1)

∂p(V ∗
j,t−1)

∂V ∗
j,t−1

+ b(yi,t−1)
∂2p(V ∗

j,t−1)

∂2V ∗
j,t−1

δδV b′(yi,t)
∂p(V ∗

j,t)

∂V ∗
j,t

> 0 (13)

Vulnerability, which increases with usage, builds upon itself. The increase in vulnerability over time justifies
CSA’s concern with security in the cloud. It also identifies the tradeoff inherent in taking shelter under the
CSP’s security umbrella. We therefore turn to the question of whether the path of accumulative vulnerability
converges or not.

Specifically, the Euler equation additionally lends itself towards comparative statics of the parameters and
their implications for (non-)convergence. The numerator of equation (13) comes from the first-order conditions
for V ∗

j,t−1 (see the proof of Proposition 4.1). Yet a user’s payoff function is not linear in V ∗
j,t−1, and so neither

are the terms in the numerator of the equation (13). The denominator of equation (13) is a function of V ∗
j,t,

discounted by both δ and δV .
Consequently, by Proposition 4.1, convergence of the optimal path of V ∗

j,t depends on δ and δV . For
example, in extreme cases, if δ = 0 (or δV = 0), decision-making becomes static. From Figure 2, the path of
V ∗
j,t is explosive because users’ and CSPs’ preferences for the future (δ) do not keep vulnerability in check or

their recognition of the carryover in vulnerability from one period to the next (δV ) does not keep vulnerability
in check. Managers must realize it is a consequence of an absence of concern with how vulnerability builds
on itself. One way to influence managerial behavior in this direction is through the guidance provided by
the aforementioned CSA document on joint security in the cloud. In the absence of managerial action, social
planners must act if the market itself can not motivate the users to sufficiently contribute to the security
umbrella.

By contrast, if δ = 1 and δV = 1, the optimal path is less volatile because users hold past, current, and
future vulnerability in equal regard. Indeed, in this case one cannot rule out ∂V ∗

j,t/∂V
∗
j,t−1 ≤ 1 and V ∗

j,t

converges. Contrasting these conditions shows how important it is for CSPs and social planners to gauge
users’ attitudes toward the future, the past, and the resulting vulnerability.

If δ = 1 and δV = 1, equation (13) becomes

∂V ∗
j,t

∂V ∗
j,t−1

=
b′(yi,t−1)

∂p(V ∗
j,t−1)

∂V ∗
j,t−1

b′(yi,t)
∂p(V ∗

j,t)

∂V ∗
j,t

+
b(yi,t−1)

∂2p(V ∗
j,t−1)

∂2V ∗
j,t−1

b′(yi,t)
∂p(V ∗

j,t)

∂V ∗
j,t

(14)

From equation (14), the optimal path depends on the possible range of changes in functions b(yi,t) and
p(yi,t). For example, if the numerator b′t−1p

′
t−1 + bt−1p

′′
t−1 is exactly the same as the denominator b′tp

′
t, then

∂V ∗
j,t/∂V

∗
j,t−1 = 1. From Figure 2, V ∗

j,t reaches a steady state. In more general cases, term b(yi,t−1) is the net
profit/benefit from using the cloud. As such, it takes the largest value in equation (14). Terms b′(yi,t) > 0
and b′(yi,t−1) > 0 are marginal profit, which is clearly less than total profit, b(yi,t−1). We assume convexity
in the model: b′′(·) < 0, so changes in b′(·) from period t− 1 to period t will not be too big if usage is large.

16



shift of b(yi,t)
and b′(yi,t)

shift of p′(Vj,t)
and p′′(Vj,t)

δ

δV

estimate users’
cloud productivity

track external
risk factors

survey or estimate users’
risk preference

survey or estimate users’ attitudes
toward past incidents

In the Model In Real Life

Purpose: CSP maximize
Πj,t, compete on security

and maintain business continuity

Action: CSP
adjust accumulated Sj,t

Figure 3: What Goes into the Vulnerability Prediction Box?

Notes: This figure shows how our model can serve as a manual for designing a prediction algorithm for cloud vulnerability. The external shocks that impact
the users’ cloud productivity and cyber risk and the changes in users’ attitude towards the past and the future impact the total vulnerability results should
enter the prediction algorithm, as in Proposition 4.1 where the dynamic path of total vulnerability is

∂V ∗
j,t

∂V ∗
j,t−1

=

b′(yi,t−1)
∂p(V ∗

j,t−1)

∂V ∗
j,t−1

+ b(yi,t−1)
∂2p(V ∗

j,t−1)

∂2V ∗
j,t−1

 /δδV b′(yi,t)
∂p(V ∗

j,t)

∂V ∗
j,t

.

The large b(yi,t) value in equation (14) is weighted by p′′ and the smaller b′(yi,t) value is weighted by p′.
Moreover, breach probability p(Vj,t) is a small number with even smaller changes. Indeed, as we allow Vj,t

to take a large range of values to accommodate large-scale usage and security investments, p(Vj,t) will not
be overly convex. Hence, weights p′′ on b(yi,t) and p′ on b′(yi,t) stay small for large usage values, yi,t, and
corresponding vulnerability. Thus, as illustrated in Figure 2, when δ = 1, δV = 1 and p′′ ≪ p′, it is possible
that ∂V ∗

j,t/∂V
∗
j,t−1 ≤ 1.

In less extreme cases, as δV increases, V ∗
j,t’s response to V ∗

j,t−1 decreases. If vulnerability depreciates
slower (higher δV ), the impact of V ∗

j,t−1 on V ∗
j,t decreases. It is similar to the case for δ; if users are more

forward-looking (higher δ) they use less CSP services in the current period owing to their concern for future
vulnerability.

With this in mind, Figure 3 illustrates how CSP managers can track the crucial variables identified in
Proposition 4.1 to design a vulnerability prediction algorithm. Specifically, the comparative statics discussed
above for the factors and parameters impacting the model are listed on the far left. In the middle, corre-
sponding real-world observations for each factor are listed. “Estimate users’ cloud productivity” is important
to understand b(·), b′(·) and b′′(·). “Track external risk factors” is useful to predict p(·), p′(·) and p′′(·)
(??). As stated previously, p′′ plays an important role in the prediction as it is the weight on the large net
profit/benefit from using the cloud, b(·). “Survey or estimate users’ risk preference” is to check whether users
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are more forward-looking (higher δ). “Survey or estimate users’ attitudes toward past incidents” is to know
vulnerability depreciation speed, δV . Successful cloud security requires a combination of marginal analysis,
risk analysis, and dynamic decision-making. Our results also highlight the theoretical importance of risk
preferences (Hedlund 2000, Safi and Browne 2023) and cybersecurity behavior (Acquisti, Adjerid, Balebako,
Brandimarte, Cranor, Komanduri, Leon, Sadeh, Schaub, Sleeper et al. 2017, Dutta and Sanyal 2023).

The purpose and subsequent actions stemming from such predictions are shown on the right of Figure 3.
For CSP managers, predicting the vulnerability path helps in competing on security and maintaining business
continuity. If the predicted vulnerability is not favorable, CSPs can adjust the total accumulated Sj,t. Section
5 discusses how CSPs target total accumulated Sj,t and its impact on competition. Alternatively, CSPs or
social planners can require minimum contributions for all users. Two-factor authentication is an example.
This raises issues related to compliance and costly verification of compliance that are beyond the scope of our
paper.

4.2 Users’ Behavior on the Optimal Path

The following propositions stem from the Euler equation and characterize the dynamics of interdependent
behavior of users in a shared security environment. Forward-looking users understand their investment into
security affects other users’ usage based on the new security level.

On the optimal path of vulnerability, V ∗
j,t, equilibrium usage, y∗i,t, increases with the size of security umbrella

Sj,t:
∂y∗i,t
∂Sj,t

> 0

The safer the CSP is as a whole, the more comfortable users are with increasing their usage. Furthermore,
this finding is novel because it identifies a state-based strategic complementarity between y∗i,t and Sj,t. Several
implications follow. First, one can view security umbrella Sj,t as an impure public good because it provides a
selective (private) benefit to user i in the form of increased yi,t and b(yi,t). Second, the increase in Sj,t need
not be due to an increase in si,t. In other words, much of a user’s security umbrella and resulting increase
in usage is due to the security investments of its CSP and other users. Finally, one cannot forget a CSP’s
business model relies on usage fees; hence, security adds to the CSP’s value proposition by increasing yi,t.

The impure nature of the shared security model impacts users’ behavior. The next proposition further
clarifies the effect, which requires the following definition of a user’s accumulated individual security investment :

Si,t =
∑
t

δtSsi,t = si,t + δSSi,t−1

A user’s vulnerability increases in any other user’s accumulated security investment. For all i′ ̸= i:

∂vi,t
∂Si′,t

> 0

Such increased vulnerability is of concern to users and CSPs, affecting their investment in security. The
next subsection characterizes users’ optimal investment in security. We examine CSPs’ optimal investment in
security in section 5.

4.3 Users’ Optimal Value Function with Respect to Security

Having characterized vulnerability, we now turn to user security. Recall from Proposition 3.7, owing to the
potential for lock-in, a user’s per-period payoff can either be increasing or decreasing in other users’ or their
CSP’s security investment; i.e., pure complements or pure substitutes. Yet in a dynamic game users maximize
a value function, not per-period payoffs, and the value function from period t onward is a function of state
(Vj,t−1, Sj,t−1). Recall lemma 4 characterizes the behavior of users’ value function with respect to vulnerability
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state Vj,t−1 as ∂Ui/∂Vj,t−1 < 0. The following lemma characterizes the behavior of users’ value function with
respect to security state Sj,t−1.

A user’s optimal value function increases in accumulated security investment:

∂Ui(Vj,t−1, Sj,t−1)

∂Sj,t−1
= δSk > 0

Lemma 4.3 establishes ∂Ui/∂Sj,t−1 is a constant. That is, there is no time- and state-dependent Euler
equation with respect to the effect of current aggregate security on future aggregate security. The dynamics
of shared security arise when security interacts with usage, i.e., the Euler equation for vulnerability (equation
(12)). As usage/vulnerability is predicated on security, we turn to the CSP’s security decision.

5 Cybersecurity and Cloud Symbiosis

In this section we consider the case where users have the ability to switch CSPs; i.e., λ ∈ [0,∞), and characterize
the (Sj,t−1, λ) pairs such that users do not switch. This produces symbiotic results whereby the no-switching
condition has implications for cumulative security investment, Sj,t, and cybersecurity, p(Vj,t); and the two
variables lock-in users via value creation under the CSP’s security umbrella, which users themselves help to
create.

5.1 No-switching Condition

We examine the no-switching constraint from the perspective of CSP 1 and its users. A similar analysis holds
for CSP 2 and its users. Investment in security has two effects influencing a user’s choice to stay: first, it
reduces the probability of a breach by reducing vulnerability, V1,t; second, it increases switching cost, λS1,t,
due to familiarity with the CSP’s security umbrella. The question is: what level of CSP security investment
satisfies the no-switching criterion? This is an economic factor affecting security design.

We define the no-switching constraint as follows. User i on CSP 1 chooses to stay if its optimal value on
CSP 1 is greater than or equal to the optimal value generated by switching to CSP 2. Once again, the next-
best alternative for users is another CSP because (i) our analysis is, effectively, ex-post to the cloud/enterprise
decision analyzed by August et al. (2014) and Zhang et al. (2020), among others, and (ii) once a user is in the
cloud the economics of the cloud make another CSP the logical next-best alternative.

Furthermore, instead of referring to the effect of CSP 1’s investment in security, scsp1,t, on its no-switching
constraint, we can instead refer to CSP 1’s choice of S1,t. By backward induction, we solve for the yi,t’s for
CSP 1’s users, and then the si,t’s for the same users. Given the si,t’s, CSP 1’s choice of scsp1,t determines
S1,t because it is the only degree of freedom left. It follows that, by backward induction, CSP 1 ultimately
determines S1,t. It is also the case in period t− 1 for scsp1,t−1 and S1,t−1. Similar logic holds for CSP 2 with
respect to S2,t and S2,t−1. Moreover, a CSP’s persistence in the market requires its no-switching constraint
is met. Consequently, we can focus on CSP 1’s choice of S1,t to meet its no-switching constraint instead of its
choice of scsp1,t to maximize its optimal value function.

In period t if user i stays with CSP 1, its stage t payoff is:

ustay
i,t = [1− cp(V1,t)]b(yi,t)− ksi,t,

then the optimal value function of a user staying with CSP 1 is:

Ustay(V1,t−1, S1,t−1) = [1− cp(V1,t)]b(yi,t)− ksi,t + δUstay(V1,t, S1,t)

If switching to CSP 2, the user’s stage t payoff is:

uswitch
i,t = [1− cp(V2,t)]b(yi,t)− ksi,t − λS1,t,
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and their optimal value function is:

Uswitch(V2,t−1, S2,t−1, S1,t−1) = [1− cp(V2,t)]b(yi,t)− ksi,t − λS1,t−1 + δUswitch(V2,t, S2,t)

As an aside, in an oligopolistic situation, we would instead take the value of uswitch
i,t for a CSP j user to be

the value of the solution to
max
j′ ̸=j

[1− cp(Vj′,t)]b(yi,t)− ksi,t − λSj,t,

From lemma 4.3 and the definition of Uswitch:

∂Ustay(V1,t−1, S1,t−1)

∂S1,t−1
= δSk > 0

∂Uswitch(V2,t−1, S2,t−1, S1,t−1)

∂S1,t−1
= −λ < 0

Hence, CSP 1 selects S1,t−1, understanding a higher value helps to keep users from switching. However,
the user ultimately makes the stay or switch decision by comparing Ustay and Uswitch. By the one-deviation
principle (Blackwell 1965) the no-switching condition holds in equilibrium if Ustay ≥ Uswitch. Furthermore, in
a symmetric MPE if the one-deviation principle holds for user i, then no other CSP 1 user can benefit from
switching. CSP 1 must at least ensure:

Ustay(V1,t−1, S1,t−1) = Uswitch(V2,t−1, S2,t−1, S1,t−1)

CSP 1 must ensure S1,t−1 is at least:

Smin
1,t−1 =

1

λ
{δSk(S2,t−1 − Smin

1,t−1)− δV b
′{[1− p(V2,t)c]V2,t−1 − [1− p(V1,t)c]V1,t−1}

+
1

2

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 −

1

2

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1}

Moreover, lock-in allows for cases where users will not switch even though:

S1,t−1 < S2,t−1;V1,t−1 > V2,t−1.

Keeping a higher level of Sj,t−1 increases users’ optimal value of staying and reduces their optimal value
of switching. However, Proposition 5.1 shows it is possible a user stays even when the other CSP has more
accumulated security investment and less accumulated vulnerability. The user is, indeed, locked-in under their
CSP’s security umbrella. Furthermore, when users do not switch in equilibrium the resulting dynamics are as
given in Section 3.

We now turn to a market characterization of CSP security.
Smin
1,t−1 and S2,t−1 are strategic complements

∂Smin
1,t−1

∂S2,t−1
=

δSk

λ+ δSk
> 0.

Hence, if CSP 2 increases its security, CSP 1 increases its security as well to keep users from switching.
At the same time, lock-in via a security umbrella reduces the intensity of security competition and in turn
reduces equilibrium Smin

j,t−1. To see this, without lock-in (λ = 0), ∂Smin
1,t−1/∂S2,t−1 = 1 and CSP 1 adjusts

Smin
1,t−1 to a change in S2,t−1 on a 1:1 basis. By contrast, for finite λ ̸= 0, 0 < ∂Smin

1,t−1/∂S2,t−1 < 1 and CSP 1
only partially adjusts to an increase in S2,t−1. CSP security competition is neither a race to the bottom nor
a war of increasing security levels. The no-switching requirements on security explain the former and partial
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δSk

λ

Spc
1,t−1

Smin
1,t−1

Figure 4: Platform Competition: The Lower Bound of Total Accumulated Security Investment

Notes: The figure shows the lower bound of security technology, the accumulated total security investment Sj,t−1 when CSPs compete with security. The

lower bound depends on the switching cost. When the switching cost λ is lower than the marginal benefit of accumulated security for users δSk, the

non-switching condition Smin
j,t−1 is bigger than the participation constraint S

pc
j,t−1

and when the switching cost is too high, the participating users will never

switch.

adjustment explains the latter. A partial reaction to the change in the security level of a rival – whether an
increase or a decrease – indicates security dynamics ultimately settle within a “Goldilocks” region for CSPs.

Our final basis of comparison is when the user is locked-in (no switching is possible). In this case λ → ∞,
and, by Proposition 5.1, Smin

1,t−1 = 0. Intuitively, if users are locked-in then the no-switching constraint is not
binding. If the no-switching constraint is not binding, the user’s participation constraint (PC) must instead
bind. That is, security must be sufficient to induce the user to voluntarily participate. Voluntarily taking
shelter in the cloud implies users are not coerced into their relationships with CSPs.

From the Taylor expansion in the proof of Proposition 5.1, when a user is locked-in:

U1(V1,t−1, S1,t−1) = δSkS1,t−1 − δV [1− p(V1,t)c]b
′V1,t−1 +

1

2

∂P (V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1

The PC requires U1,t−1 ≥ 0. Solving this inequality for S1,t−1

Spc
1,t−1 =

1

δSk

{
δV [1− p(V1,t)c]b

′V1,t−1 −
1

2

∂P (V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1

}
(15)

The PC for users of CSP 2 similarly requires

Spc
2,t−1 =

1

δSk

{
δV [1− p(V2,t)c]b

′V2,t−1 −
1

2

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1

}
(16)

In general, a user is effectively locked-in if the PC for their CSP is the binding constraint. This raises
the interesting possibility users are effectively locked-in under finite values of switching costs, λ. Verification
necessitates a comparison of Smin

j,t−1 versus Spc
j,t−1.

The user’s participation constraint is the binding constraint instead of the no-switching constraint, Spc
j,t−1 >

Smin
j,t−1, when the marginal cost of accumulated security from lock-in, λ, exceeds the marginal benefit of accumu-

lated security for users, ∂Ui(Sj,t−1, Vj,t−1)/∂Sj,t−1, which, by lemma 4, equals δSk. That is, the participation
constraint is the binding constraint if

λ > δSk
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In this case, the users of both CSPs are effectively locked-in.
Note first that lock-in is no longer akin to λ → ∞. The requirement instead becomes λ > δSk. Figure 4

shows two different sets of linear relationships between the no-switching constraint Smin
j,t−1 and the participation

constraint Spc
j,t−1, one for when switching cost λ is above the threshold and one for λ below it. If switching cost

λ is high the binding constraint is the participation constraint Spc
j,t−1. As shown in Figure 4, the no-switching

constraint is smaller than the participation constraint when λ is higher than the threshold; thus, the plane
is less steep. In this case, the participation constraint is enough to lock in users because the no-switching
constraint is smaller than the participation constraint in a flatter plane.

By contrast, if switching cost λ is instead lower than the marginal benefit of accumulated security for users,
δSk, the no-switching constraints are instead the binding constraints. The plane is steeper in Figure 4 because
the no-switching constraint supersedes the participation constraint. It implies (i) users’ PCs are not binding,
which is a welfare improvement as users are no longer held to their reservation utilities; (ii) the no-switching
constraints are the mechanism for establishing non-monopolistic platform competition (Lee 2014, Arce 2020,
2022), and (iii) if Sj,t−1 < Smin

j,t−1 whereas Sj′,t−1 ≥ Smin
j′,t−1, the result is a monopoly outcome in favor of CSP

j′. Cybersecurity is a driver of non-monopolistic outcomes in CSP markets.
By extension, for heterogeneous users, the relevant economic variable is the marginal benefit of cumulative

security of the marginal user (i.e., the user whose no-switching constraint is binding for the CSP). Furthermore,
CSPs can do this by bolstering their security umbrella in two possible ways: increasing their own security
investment and/or their users’ security investment. Examples capturing both possibilities include offering
blockchains and homomorphic encryption to users. This suggests a hastening from subscription-based CSPs
that turn users’ fixed costs into variable ones towards CSPs offering advantages under their security umbrella.

5.2 CSPs and the Path of Vulnerability

In the end, the combination of usage and security determines vulnerability. Furthermore, as shown in our
analysis of the Euler equation for vulnerability, users’ consideration of the future impact of usage on vulnera-
bility or lack thereof determines whether the path of vulnerability stays within a sustainable range or instead
explodes. The implications for CSPs are as follows.

Given discount factor δ, the CSPs’s value function is

Πj,t(Vj,t−1, Sj,t−1) = max
scspj,t

{πj,t(·) + δΠj,t+1(Vj,t, Sj,t)} (17)

This is the CSP’s Bellman equation expressed in terms of the optimal value function, Πj,t(Vj,t−1, Sj,t−1),
current-period payoff, πj,t = (1−p̃(Vj,t)C)nB(yi,t)−Kscspj,t, and discounted continuation value, δΠj,t+1(Vj,t, Sj,t).

CSP profits decrease in vulnerability at a constant rate equal to the discounted value of the cost/benefit
ratio of CSP security.

∂Πj(Vj,t, Sj,t)

∂Vj,t−1
= −δV

K

α
(18)

Table 3 illustrates the impact of different levels of the marginal contribution of CSP security investment,
α. The value of α impacts users’ usage, users’ security contribution, and CSP’s security investment. Column
2 shows users’ marginal benefit from the CSPs’ investment increases in α. Column 3 shows users’ inclination
to contribute to the security umbrella decreases in α. Column 4 shows CSPs’ lifetime payoff is less sensitive to
vulnerability as α increases. Overall, in an environment where CSPs’ marginal security contribution is higher
than the users’, α > 1, both usage and vulnerability are higher.

Furthermore, as the only way a CSP can directly decrease vulnerability is by increasing security, CSPs are
in the business of providing security. Indeed, the proof of the proposition shows a CSP’s security investment
only impacts its optimal value function by reducing total vulnerability. Hence, in no way can security be
considered auxiliary to the CSP’s core value proposition. This can be seen in that the greater a CSP’s relative
weight in providing shared security for the service in question, α, the less vulnerability reduces CSP profits.
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Table 3: The Impact of Marginal CSP Security Contribution

α Value
∂ui,t

∂scspj,t
> 0

∂u2
i,t

∂si,t∂scspj,t
< 0

∂Πj

∂Vj,t−1
< 0 Influences

α = 2 2b(yi,t)
∂p(Vj,t)

∂Vj,t
[δtV ] −2b(yi,t)

∂p2(Vj,t)

∂V 2
j,t

δtV −δV
K
2

Users are more inclined to increase
usage and less inclined to contribute
to the security umbrella. CSPs are
less inclined to invest in security.
Vulnerability increases.

α = 1 b(yi,t)
∂p(Vj,t)

∂Vj,t
[δtV ] −b(yi,t)

∂p2(Vj,t)

∂V 2
j,t

δtV −δV K The outcome on vulnerability is neu-
tral because there is no relative dif-
ference between the marginal impact
of CPS versus user contributions to
the security umbrella .

α = 0.5 0.5b(yi,t)
∂p(Vj,t)

∂Vj,t
[δtV ] −0.5b(yi,t)

∂p2(Vj,t)

∂V 2
j,t

δtV −2δV K Users are less inclined to increase us-
age and more inclined to contribute
to the security umbrella. The plat-
form is more motivated to invest in
security. Vulnerability decreases.

Note: CSPs can have amplified marginal effect on security investment from advanced security measures and promptly respond to emerging threats that lead to
an α > 1, and α < 1 can be because CSPs’ investment accelerates homogeneity that leads to correlated failure (Chen, Kataria, and Krishnan 2011). The
second column shows the users’ marginal benefit from CSP’s investment at different α. The third column is the marginal change in the user’s best reply with
respect to CSP’s investment. The fourth column is the constant marginal cost of vulnerability for the platform.

CSPs therefore face a tradeoff in that increased usage both increases revenues and increases vulnerability.

However, unlike
∂Uj(Vj,t−1,Sj,t−1)

∂Vj,t−1
for users, which is a function of both Vj,t−1 and Vj,t, thereby leading to an

Euler equation, there is no carryover from one period to the next for
∂Πj(Vj,t−1,Sj,t−1)

∂Vj,t−1
. From Proposition

(4.1), vulnerability increases and builds upon itself through usage. It is of particular concern if users’ path
of vulnerability is explosive. Indeed, it is ultimately indicative of a potential fallacy of composition stemming
from users taking shelter within the cloud. The fallacy can occur because (i) aggregate vulnerability increases
over time because the cloud itself becomes the attack surface, (ii) CSPs’ dynamic value function is decreasing
in aggregate vulnerability, and (iii) users’ dynamic value function is decreasing in aggregate vulnerability.
There is a difference between individual user benefits from taking shelter in the cloud and their aggregate
implications. Ultimately, cloud security depends on whether users and cloud managers have the foresight to
understand the cloud is a dynamic shared security environment.

6 Conclusion

We address the growing importance of security in cloud computing services via a dynamic game of shared
security in the cloud. Our analysis characterizes the optimal dynamic path of accumulated vulnerability of
cloud services providers (CSPs), and CSP users’ dynamic behavior (cloud usage and security investments)
on this path. The results include theoretical contributions to the literature on the competitive impact of
information security and extend the public good nature of cybersecurity to joint products (impure public
goods). Not only does security competition affect CSP and CSP users’ security investment decisions, it also
changes usage decisions in lieu of their dynamic impact on CSP vulnerability. Consequently, a less-secure
CSP can lock in users by providing the means for creating value under their security umbrella. The dynamics
imply cloud security is an atypical form of impure public good, encouraging greater adoption and intensifying
vulnerability unless CSP managers and users’ managers account for the future impact of their actions.

In addition, we show how CSP security competition to keep users from switching facilitates non-monopolistic
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CSP markets. For example, as shown in Table 2, AWS offers Amazon S3 Server-Side Encryption, which auto-
matically encrypts data stored in Amazon S3, and AWS Key Management Service (KMS), and is optimized to
work only with other AWS services. Google Cloud as well offers Cloud Storage Server-Side Encryption, which
automatically encrypts data stored in Google Cloud Storage and Google Cloud KMS, and is designed to work
seamlessly only with other Google Cloud services. The degree of switching costs resulting from lock-in also
determines whether other users’ security investments increase or decrease a user’s payoff. Hence, dynamic and
competitive considerations modify what is meant by shared security and joint responsibility in the cloud.

Our results have significant management and policy implications. The practical motivation for this study
is to characterize how cloud providers compete on security and navigate the changing security environment.
Cloud providers view information security from two perspectives: as a competitive advantage and an oper-
ational objective. For competition, we derive the lower bound on security investment to keep users from
switching as a function of a dynamic constraint involving a CSP’s past and future security investments and
users’ past and future usage and security decisions. From the operational perspective, cloud providers are
encountering increasing security expectations and responsibilities. We provide a map for CSPs to assess and
monitor their overall vulnerability. For example, providers can use surveys and experiments to understand
users’ risk preferences better and tailor their security offerings accordingly. When choosing a CSP managers
should adopt a long-term view and consider the future possibility of switching to a different provider.

We also find CSPs will not engage in a war of increasing security levels to attract users. Nor will security
competition manifest itself as a race to the bottom, a characterization that should be of interest to regulators.
It is worth noting that when CSPs use security to keep users from switching, a welfare improvement results
in that users are not held to reservation levels of utility. Furthermore, social planners aiming to encourage
competition can view no-switching levels of security as a means for producing non-monopolistic outcomes in
cloud services.

Future research directions include accommodating heterogeneous users and security standardization within
a dynamic shared security environment. In terms of heterogeneity, according to Flexera’s 2023 State of Cloud
Report (?), there is an increase in the demand for cloud services across various types of organizations, in-
cluding individuals, small businesses, large corporations, government agencies, non-profit organizations, and
educational institutions. With respect to standardization, AWS, Palo Alto Networks, IBM, and other notable
companies announced the Open Cybersecurity Schema Framework (OCSF) during the August 2022 Blackhat
conference. The initiative represents a significant milestone in the advancement of cybersecurity standard-
ization, as it aims to address the issue of tool incompatibility among security vendors. Both heterogeneity
and standardization will affect impureness of the public good resulting from enhancements to the security
umbrella.

A final direction is cloud security governance, such as designing mechanisms to encourage a cooperative
result to improve cloud security and ensure vulnerability converges to a steady state. Our dynamic equilibrium
results highlight the importance of incorporating risk preferences and cybersecurity behavior for such designs.

7 Proofs for Section 2

7.1 Proof of Proposition 3.7

Proposition 3.7 Recall
ui,t = (1− p(Vj,t)c)b(yi,t)− ksi,t − λSj,t−1

Taking the first derivative with respect to other users’ investment decision,

∂ui,t

∂si′,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂si′,t
− λ

∂Sj,t

∂si′,t
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In a symmetric MPE equations (1) and (2) become

Vj,t =
∑
t

δtV [(n− 1)(yi′,t − si′,t) + (yi,t − si,t)− αscspj,t]

Sj,t =
∑
t

δtS [αscspj,t + (n− 1)si′,t + si,t]

First, without switching costs (λ = 0) the first-order derivative is

∂ui,t

∂si′,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂si′,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t
[−(n− 1)δtV ] > 0

Without switching costs, users’ security investments are plain complements.
With switching costs, plain complements requires

∂ui,t

∂si′,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂si′,t
− λ

∂Sj,t

∂si′,t
> 0

Appealing again to the expressions for Vj,t and Sj,t in a symmetric MPE, it becomes

b(yi,t)
∂p(Vj,t)

∂Vj,t
δtV > λδtS

Without switching costs, a CSP’s security investment is a plain complement for users,

∂ui,t

∂scspj,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂scspj,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t
[−αδtV ] > 0

With switching costs, plain complements requires

∂ui,t

∂scspj,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂scspj,t
− λ

∂Sj,t

∂scspj,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t
[−αδtV ]− λ

∂Sj,t

∂scspj,t
> 0

Given
∂Sj,t

∂scspj,t
= δtSα, this reduces to

b(yi,t)
∂p(Vj,t)

∂Vj,t
δtV > λδtS

The condition is the same as for other user’s security investments.

7.2 Proof of Proposition 3.7

Proposition 3.7 From the proof of Proposition 3.7

∂ui,t

∂si′,t
= b(yi,t)

∂p(Vj,t)

∂Vj,t
(δV (n− 1))− λδtS(n− 1)

The cross derivative is

∂u2
i,t

∂si,t∂si′,t
=

∂u2
i,t

∂si′,t∂si,t
= −b(yi,t)δV

∂p2(Vj,t)

∂V 2
j,t

(δV (n− 1)) < 0
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7.3 Proof of Proposition 3.7

Proposition 3.7 The first derivative is

∂ui,t

∂si,t
= −b(yi,t)

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂si,t
− λ

∂Sj,t

∂si,t

The cross derivative is
∂u2

i,t

∂si,t∂scspj,t
= b(yi,t)δV

∂p2(Vj,t)

∂V 2
j,t

(−αδt) < 0

8 Proofs for Section 4

8.1 Proof of Lemma 4

Lemma 4 Following the argument in B-S, differentiating Bellman equation (8) with respect to state Vj,t−1

∂Ui(Vj,t−1, Sj,t−1)

∂Vj,t−1
= −cb

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂Vj,t−1
+ δ

∂Ui(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂Vj,t−1

Given ∂Vj,t/∂Vj,t−1 = δV ,

∂Ui(Vj,t−1, Sj,t−1)

∂Vj,t−1
= δV

{
−cb

∂p(Vj,t)

∂Vj,t
+ δ

∂Ui(Vj,t, Sj,t)

∂Vj,t

}
Solving the best reply for yi,t in (10) for

∂Ui(Vj,t,Sj,t)
∂Vj,t

and substituting into the above equation

∂Ui(Vj,t−1, Sj,t−1)

∂Vj,t−1
= −δV (1− p(Vj,t)c)b

′ < 0

8.2 Proof of Proposition 4.1

Proposition 4.1 From lemma 4, (1 − p(Vj,t)c)b
′ = − 1

δV

∂Ui(Vt−1,St−1)
∂Vj,t−1

. Substituting this into the first term on

the right-hand side of (10) and solving for ∂Ui(Vt−1,St−1)
∂Vj,t−1

results in the Euler equation.

8.3 Proof of Proposition 4.1

Proposition 4.1 Totally differentiating equation (12) with respect to V ∗
j,t:[

−cb′
∂p(V ∗

j,t−1)

∂V ∗
j,t−1

− cb
∂2p(V ∗

j,t−1)

∂2V ∗
j,t−1

]
∂V ∗

j,t−1

∂V ∗
j,t

= −δδV cb
′

[
∂p(V ∗

j,t)

∂V ∗
j,t

]
∂V ∗

j,t

∂V ∗
j,t

Given
∂p(Vj,t)
∂Vj,t

> 0,
∂p2(Vj,t)

∂V 2
j,t

> 0, and rearranging terms

∂V ∗
j,t

∂V ∗
j,t−1

=
cb′

∂p(V ∗
j,t−1)

∂V ∗
j,t−1

+ cb
∂2p(V ∗

j,t−1)

∂2V ∗
j,t−1

δδV cb′
∂p(V ∗

j,t)

∂V ∗
j,t

> 0 (19)

All terms in the numerator and the denominator of equation (19) are positive. Hence, ∂V ∗
j,t/∂V

∗
j,t−1 > 0.

This and a positive second derivative of p(·) implies the ∂p(V ∗
j,t)/∂V

∗
j,t in the denominator becomes larger.

It is, therefore, possible the denominator is greater than the first term in the numerator. Hence, whether
∂V ∗

j,t/∂V
∗
j,t−1 > 1 depends on δ, δV , and the second term in the numerator.
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8.4 Proof of Proposition 4.2

Proposition 4.2 From equations (12), the Euler equation of optimal V ∗
j,t−1 and V ∗

j,t is:

[1− p(V ∗
j,t−1)c]b

′(yi,t−1)− b(yi,t−1)
∂p(V ∗

j,t−1)

∂V ∗
j,t−1

= δδV [1− p(V ∗
j,t)c]b

′(yi,t)

Substituting in the components of V ∗
j,t as a function of V ∗

j,t−1, Sj,t and yi,t, (with yi′,t = yi,t in a symmetric
MPE):

[1− p(V ∗
j,t−1)c]b

′(yi,t−1)− b(yi,t−1)
∂p(V ∗

j,t−1)

∂V ∗
j,t−1

= δδV [1− p(δV V
∗
j,t−1 + nyi,t − Sj,t)c]b

′(yi,t) (20)

For any given value of the left-hand side of equation (20), if Sj,t increases, yi,t must commensurately
increase, holding all other variables constant:

∂yi,t
∂Sj,t

> 0

8.5 Proof of Proposition 4.2

Proposition 4.2
From Proposition 4.2,

∂yi,t
∂Sj,t

> 0

where Sj,t ≡ nSi,t + αScspj,t = Si,t + (n− 1)Si′,t + αScspj,t.
Suppose the increase in Sj,t is solely from other users. If Si′,t, i

′ ̸= i increases but Si,t is constant (⇒ si,t = 0)
and Scspj,t is constant (⇒ scspj,t = 0) , then vi,t = yi,t − si,t must increase because yi,t increases in Sj,t.

8.6 Proof of Lemma 4.3

Lemma 4.3 The rationale for this lemma and its proof is as follows. By backward induction, given the optimal
yi,t’s, from Bellman equation (8),

∂Ui(Vj,t−1, Sj,t−1)

∂si,t
= −cb

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂Si,t

∂Si,t

∂si,t
− k + δ

[
∂Ui(Vj,t, Sj,t)

∂Sj,t

∂Si,t

∂si,t
+

∂Ui(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂Si,t

∂Si,t

∂si,t

]
= 0

Substituting in
∂Vj,t

∂Si,t
= −1 and

∂Sj,t

∂si,t
= 1:

∂Ui(Vj,t−1, Sj,t−1)

∂si,t
= cb

∂p(Vj,t)

∂Vj,t
− k + δ

[
∂Ui(Vj,t, Sj,t)

∂Sj,t
− ∂Ui(Vj,t, Sj,t)

∂Vj,t

]
= 0 (21)

where ∂Ui(Vj,t, Sj,t)/∂Sj,t is unknown. Hence, the need for the lemma.
Once again, characterizing the implicit best reply function for si,t in (21) requires analyzing the Bellman

equation (8) using the B-S procedure with respect to state Sj,t. Given the optimal si,t from (21), differentiating
Bellman equation (8) with respect to state Sj,t−1:

∂Ui(Vj,t−1, Sj,t−1)

∂Sj,t−1
= −bc

∂p(Vj,t)

∂Vj,t

∂Vj,t

∂Sj,t

∂Sj,t

∂Sj,t−1
− k

n
(

∂Sj,t

∂Sj,t−1
− δS)

+δ

(
∂Ui(Vj,t, Sj,t)

∂Sj,t

∂Sj,t

∂Sj,t−1
+

∂Ui(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂Sj,t

∂Sj,t

∂Sj,t−1

)
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As
∂Sj,t

∂Sj,t−1
= δS , and

∂Vj,t

∂Sj,t
= −1:

∂Ui(Vj,t−1, Sj,t−1)

∂Sj,t−1
= δSbc

∂p(Vj,t)

∂Vj,t
+ δSδ

(
∂Ui(Vj,t, Sj,t)

∂Sj,t
− ∂Ui(Vj,t, Sj,t)

∂Vj,t

)
Substituting the value for

∂Ui(Vj,t,Sj,t)
∂Sj,t

− ∂Ui(Vj,t,Sj,t)
∂Vj,t

derived from the implicit best reply function for si,t in

(21) yields:
∂Ui(Vj,t−1, Sj,t−1)

∂Sj,t−1
= δSk

Thus proving the lemma. Upon iterating one period, it is the unknown term in first-order condition (21).

9 Proofs for Section 5

9.1 Proof of Proposition 5.1

Proposition 5.1 Given an infinite horizon, the characterizations in lemmas 1 and 2 continue to hold for all
i ∈ {stay, switch}, where j is the relevant host CSP j ∈ {1, 2}:

∂Ui

∂Vj,t−1
= −δV [1− p(Vj,t)c]b

′,
∂2Ui

∂V 2
j,t−1

=
∂p(Vj,t)

∂Vj,t
δ2V cb

′

∂Ui

∂Sj,t−1
= δsk ⇒ ∂2Ui

∂S2
j,t−1

= 0,
∂Ui

∂Sj,t−1∂Vj,t−1
= 0

In addition, from lemma 5.1: ∂Uswitch

∂S1,t−1
= −λ ⇒ ∂2Uswitch

∂S2
1,t−1

= 0.

As Ustay is a function of V1,t−1, S1,t−1, and Uswitch is a function of V2,t−1, S2,t−1 and S1,t−1, we employ the
partial derivatives expressed above in order to generate a second-order Taylor series as approximations of Ustay

and Uswitch. Such a quadratic approximation is appropriate because two of the second-order partials above
equal zero, as does the cross-partial. Higher-order partial derivatives are equal to zero as well. Furthermore, a
Taylor expansion is around zero, and Ustay(0, 0) = 0, Uswitch(0, 0, 0) = 0. It follows that the Taylor expansions
are

Ustay(V1,t−1, S1,t−1) = δskS1,t−1 − δV [1− p(V1,t)c]b
′V1,t−1 +

1

2

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1 + ζstay

Uswitch(V2,t−1, S2,t−1, S1,t−1) = −λS1,t−1 + δskS2,t−1 − δV [1− p(V2,t)c]b
′V2,t−1

+
1

2

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 + ζswitch

where ζstay and ζswitch represent the residuals. From here on we ignore the residuals and focus on the quadratic
approximations.

CSP 1 only needs to make a sufficient security investment such that the no-switching constraint is binding.
Call this Smin

1,t such that Ustay = Uswitch. That is,

δSkS
min
1,t−1 − δV [1− p(V1,t)c]b

′V1,t−1 +
1

2

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1

= −λSmin
1,t−1 + δSkS2,t−1 − δV [1− p(V2,t)c]b

′V2,t−1 +
1

2

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1

Smin
1,t−1 =

1

λ
{δSk(S2,t−1 − Smin

1,t−1)− δV b
′{[1− p(V2,t)c]V2,t−1 − [1− p(V1,t)c]V1,t−1}
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+
1

2

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 −

1

2

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1}

this is the expression for Smin
1,t−1 given in Proposition 5.1.

We now turn to the claim that the no-switching condition can hold even when S1,t−1 < S2,t−1 and V1,t−1 >
V2,t−1. Pulling all Smin

1,t−1 terms to the left-hand side of the above equality:(
1 +

1

λ
δSk

)
Smin
1,t−1 =

1

λ
δSkS2,t−1 −

1

λ
{δV b′{[1− p(V2,t)c]V2,t−1 − [1− p(V1,t)c]V1,t−1}

+
1

2λ

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 −

1

2λ

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1 (22)

Since p′(Vj,t) > 0 and p′′(Vj,t) > 0 and we assume V2,t−1 < V1,t−1:

Ω =
1

2λ

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 −

1

2λ

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1 < 0

If we assume 1− p′(Vj,t)δV c < 0,6

Ψ = − 1

λ
{δV b′{[1− p(V2,t)c]V2,t−1 − [1− p(V1,t)c]V1,t−1} < 0

Then the above expression for Smin
1,t−1 in (25) can be written as:(
1 +

1

λ
δSk

)
Smin
1,t−1 =

1

λ
δSkS2,t−1 + [Ψ + Ω]︸ ︷︷ ︸

(−)

(23)

For this to hold it must be the case that Smin
1,t−1 < S2,t−1

9.2 Proof of Proposition 5.1(
1 +

1

λ
δSk

)
Smin
1,t−1 =

1

λ
δSkS2,t−1 −

1

λ
δV b

′{[1− p(V2,t)c]V2,t−1 − [1− p(V1,t)c]V1,t−1}

+
1

2λ

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 −

1

2λ

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1 (24)

Smin
1,t−1 =

1

(λ+ δSk)
{δSkS2,t−1 − δV b

′{[1− p(V2,t)c]V2,t−1 − [1− p(V1,t)c]V1,t−1}

+
1

2

∂p(V2,t)

∂V2,t
δ2V cb

′V 2
2,t−1 −

1

2

∂p(V1,t)

∂V1,t
δ2V cb

′V 2
1,t−1} (25)

9.3 Proof of Proposition 5.1

The no-switching condition in equation (25) can be written as a function of participation constraints (15) and
(16), (

1 +
1

λ
δSk

)
Smin
1,t−1 =

1

λ
δSkS

pc
2,t−1 +

1

λ
δSkS

pc
1,t−1 (26)

6Recall δV , c ∈ (0, 1).

29



By symmetry, if users of CSP 1’s participation constraint is met, it is met for users of CSP 2 as well. It follows
that Spc

2,t−1 = Spc
1,t−1. Substituting into equation (26):(

1 +
1

λ
δSk

)
Smin
1,t−1 =

2

λ
δSkS

pc
1,t−1

We can see Smin
1,t−1 < Spc

1,t−1 if:

1 +
1

λ
δSk >

2

λ
δSk

which is:
λ > δSk

The left hand is the per-unit marginal cost of accumulated security for users because of the lock-in effect.
The right hand is the depreciation speed of security investment times the per-unit cost of security investment
for users. And from lemma 1, it is the marginal benefit of accumulated security for users.

10 Proof of Proposition 5.2

By backward induction, given the optimal yi,t and optimal si,t:

∂Πj(Vj,t−1, Sj,t−1)

∂scspj,t
= −CnB

∂p̃(Vj,t)

∂Vj,t

∂Vj,t

∂Scspj,t

∂Scspj,t

∂scspj,t
−K

+δ

[
∂Πj(Vj,t, Sj,t)

∂Sj,t

∂Sj,t

∂scspj,t
+

∂Πj(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂Scspj,t

∂Scspj,t

∂scspj,t

]
= 0

Substituting in
∂Vj,t

∂Scspj,t
= −α,

∂Sj,t

∂scspj,t
= α, and

∂Scspj,t

∂scspj,t
= 1:

∂Πj(Vj,t−1, Sj,t−1)

∂scspj,t
= CnBα

∂p̃(Vj,t)

∂Vj,t
−K + δα

[
∂Πj(Vj,t, Sj,t)

∂Sj,t
− ∂Πj(Vj,t, Sj,t)

∂Vj,t

]
= 0 (27)

where
∂Πj(Vj,t,Sj,t)

∂Sj,t
and

∂Πj(Vj,t,Sj,t)
∂Vj,t

are unknowns.

At the optimum the term in brackets takes the value

∂Πj(Vj,t, Sj,t)

∂Sj,t
− ∂Πj(Vj,t, Sj,t)

∂Vj,t
=

K

δα
− CnB

δ

∂p̃(Vj,t)

∂Vj,t
(28)

While it is asserted
∂Πj(Vj,t,Sj,t)

∂Sj,t
is an unknown, in actuality

∂Πj(Vj,t,Sj,t)
∂Sj,t

= 0 because, as we argue in the text,

by the process of backward induction, once the CSP selects it’s scspj,t there are no degrees of freedom left for

determining Sj,t. Selecting scspj,t is equivalent to selecting Sj,t and, at the optimum,
∂Πj(Vj,t−1,Sj,t−1)

∂scspj,t
= 0.

For purposes of completeness, we prove
∂Πj(Vj,t,Sj,t)

∂Sj,t
= 0. Once this is established, equation (28) is used to

solve for
∂Πj(Vj,t,Sj,t)

∂Vj,t
along the optimal path.

Employing the B-S procedure by differentiating (17) with respect to state Sj,t−1:

∂Πi(Vj,t−1, Sj,t−1)

∂Sj,t−1
= −CnB

∂p̃(Vj,t)

∂Vj,t

∂Vj,t

∂Sj,t

∂Sj,t

∂Sj,t−1
−K

∂scspj,t
∂Sj,t

∂Sj,t

∂Sj,t−1

+δ

[
∂Πj(Vj,t, Sj,t)

∂Sj,t

∂Sj,t

∂Sj,t−1
+

∂Πj(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂Sj,t

∂Sj,t

∂Sj,t−1

]
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Directly differentiating,
∂Sj,t

∂Sj,t−1
= δS ,

∂Vj,t

∂Sj,t
= −1 and

∂Sj,t

∂scspj,t
= α, which is a constant. Hence, by the inverse

function rule for partial differentiation,
∂scspj,t
∂Sj,t

= 1
α . The above equation becomes

∂Πj(Vj,t−1, Sj,t−1)

∂Sj,t−1
= δSCnB

∂p̃(Vj,t)

∂Vj,t
− δS

α
K + δSδ

[
∂Πj(Vj,t, Sj,t)

∂Sj,t
− ∂Πj(Vj,t, Sj,t)

∂Vj,t

]
Substituting in the value,

∂Πj(Vj,t,Sj,t)
∂Sj,t

− ∂Πj(Vj,t,Sj,t)
∂Vj,t

= K
δα − CnB

δ
∂p̃(Vj,t)
∂Vj,t

, from equation (28),

∂Πi(Vj,t−1, Sj,t−1)

∂Sj,t−1
= 0

That is, our intuition with respect to
∂Πj(Vj,t−1,Sj,t−1)

∂scspj,t
and

∂Πj(Vj,t,Sj,t)
∂Sj,t

at the optimum holds. A CSP’s security

investment only impacts its optimal value function by reducing total vulnerability. Substituting this value into
equation (28),

∂Πj(Vj,t, Sj,t)

∂Vj,t
=

1

δ

[
CnB

∂p̃(Vj,t)

∂Vj,t
− K

α

]
(29)

Returning again to the B-S procedure,

∂Πj(Vj,t−1, Sj,t−1)

∂Vj,t−1
= −CnB

∂p̃(Vj,t)

∂Vj,t

∂Vj,t

∂Vj,t−1
+ δ

∂Πj(Vj,t, Sj,t)

∂Vj,t

∂Vj,t

∂Vj,t−1

Substituting in
∂Vj,t

∂Vj,t−1
= δV and the value from equation (29),

∂Πj(Vj,t−1, Sj,t−1)

∂Vj,t−1
= −CnB

∂p̃(Vj,t)

∂Vj,t
δV + δ

1

δ
CnB

∂p̃(Vj,t)

∂Vj,t
δV − 1

δ

K

α
δV δ = −δV

K

a
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